这篇文章可以作为一个设计指南,为特定分类任务的 CNN 设计提供指导。作者围绕准确率、速度、内存消耗三个指标的权衡,从网络类型、架构设计、数据处理和迁移学习等方面介绍了 CNN 设计过程中使用的方法。
Google DeepMind 团队介绍了「GraphCast」,一种直接从再分析数据训练的基于机器学习的方法。
但这种情况正在开始改变。借助一种称为稀疏卷积神经网络 (Sparse Convolutional Neural Network,SCNN) 的机器学习工具,研究人员可以专注于数据的相关部分并筛选出其余部分。
BM 欧洲研究院和苏黎世联邦理工学院的研究人员提出了 Regression Transformer(RT),这是一种将回归抽象为条件序列建模问题的方法。这为多任务语言模型引入了一个新方向——无缝桥接序列回归和条件序列生成。
化合物效力预测是机器学习在药物发现中的一种流行应用,为此使用了越来越复杂的模型。
机器学习和基础学科交叉在近年受到越来越多的关注。能够从大量数据中学习的 AI,是否能够像人类一样,从数据中发现规律?当神经网络被用于解决物理问题时,是否有可能学习到物理知识?
在这里,研究人员试图测试 OP-TIL 是否可以将 I 期 HPV 相关 OPSCC 患者分为低风险和高风险组,并帮助选择患者进行降级临床试验。
针对核酸大分子,特别是 RNA 的基于结构的药物设计(SBDD)是一个获得动力的研究方向,已经产生了几种 FDA 批准的化合物。
杜氏肌营养不良症(Duchenne muscular dystrophy,DMD)是一种由肌营养不良蛋白基因突变引起的肌肉萎缩性遗传疾病。
在2012年的ImageNet挑战赛(ILSVRC)上,深度卷积神经网络AlexNet横空出世,在图像分类识别领域实现了质的飞跃,被认为是AI时代的标志性事件,代表着深度学习时代的正式开端。
在机器人和计算机视觉领域,光学 3D 距离传感器已经得到了广泛应用,比如 RGB-D 摄像头和 LIDAR 传感器,都在 3D 环境绘制和无人驾驶等任务中扮演了重要角色。
武汉新型冠状病毒肺炎的疫情仍在不断扩散。截至2020年1月30日7时,确诊病例达到7201例,确诊病例数已经超过2003年非典。随着确诊人数的增多,需要尽快确定可能感染武汉2019年新型冠状病毒(2019-nCoV)的潜在宿主与中间宿主,切断病毒传播链。