物理系统中存在的纠缠的量化对于基础研究和许多前沿应用至关重要。现在,实现这一目标需要系统的先验知识或非常苛刻的实验程序,例如全状态断层扫描或集体测量。
偶极扩散函数 (DSF) 工程重塑了显微镜的图像,可以最大限度地提高测量偶极状发射器 3D 方向的灵敏度。
代谢动力学模型通过机械关系将代谢通量、代谢物浓度和酶水平联系起来,使其对于理解、预测和优化生物体的行为至关重要。
Gary Marcus 认为,人工智能不可能只是机器学习或深度学习。我们需要更丰富的综合方法才能取得进展。
武汉新型冠状病毒肺炎的疫情仍在不断扩散。截至2020年1月30日7时,确诊病例达到7201例,确诊病例数已经超过2003年非典。随着确诊人数的增多,需要尽快确定可能感染武汉2019年新型冠状病毒(2019-nCoV)的潜在宿主与中间宿主,切断病毒传播链。
在刚闭幕不久的 2019 年 NeurIPS 大会上,美国莱斯大学(Rice University)研究员 Anshumali Shrivastava 宣布他们在分布式深度学习方面取得了新的突破——MACH 算法。
公众号/AI前线 策划 | 刘燕 作者 | Jerry Wei 译者 | Sambodhi 编辑 | Lind […]
深度学习已经成为推荐系统领域的首选方法,但与此同时,已有一些论文指出了目前应用机器学习的研究中存在的问题,例如新模型结果的可复现性,或对比实验中基线的选择。
公众号/将门创投 arxiv 编译: T.R 【温馨提示】本文长度4967字,建议先收藏后认真阅读。 基于图像 […]
本文最初发布于 Max Pechyonkin 个人博客 https://pechyonkin.me ,经原作者授权由 InfoQ 中文站翻译并分享。
为了解决这些问题,研究人员将目光投向了深度学习,利用生成模型实现了深度估计和定位任务,为机器人环境感知带来了全新的解决方案。
英国赫特福德大学与 GBG Plc 的研究者近日发布了一篇综述论文,对人脸识别方法进行了全面的梳理和总结,其中涵盖各种传统方法和如今风头正盛的深度学习方法。
我被问到最多的问题是“我如何获得更高的精度?”。机器学习工程师,无论是新手还是有经验的,都会问这个问题。
为了将最新的计算机视觉模型引入移动设备,Facebook 开发了 QNNPACK,一个针对低强度卷积进行优化的函数库。
这样的能力将为生物学研究带来翻天覆地的变革,无论是癌症研究还是药物开发都将受益于新的观测方式,我们看到的细胞将不是扁平的二维截面,也不再是课本上一成变的图样,而是一个生命充满活力的生生不息!