公众号/大数据文摘
大数据文摘作品
编译:潇夜、大饼、蒋宝尚
昨天,谷歌刚刚上线的机器学习课程刷屏科技媒体头条(点击查看相关评测)。激动过后,多数AI学习者会陷入焦虑:入坑人工智能,到底要从何入手?
为了节省大家的时间,我们搜遍网络把最好的免费资源汇总整理到这篇文章当中。这些链接够你学上很久,而且你看完本文一定会再次惊叹:现在网上关于机器学习、深度学习和人工智能的信息真的非常多。
本文罗列了以下几个方面的学习资源,供大家收藏:知名研究人员、人工智能研究机构、视频课程、博客、Medium、书籍、YouTube、Quora、Reddit、GitHub、播客、新闻订阅、科研会议、研究论文链接、教程以及各种小抄表。
许多著名的人工智能研究人员都在网络上有很强的影响力。下面我列出了20个专家,也给出了能够找到他们详细信息的网站。
http://robots.stanford.edu
http://yann.lecun.com
http://www.cs.ubc.ca/~nando/
http://www.andrewng.org
http://ai.stanford.edu/users/koller/
http://cs.stanford.edu/~acoates/
http://people.idsia.ch/~juergen/
http://www.cs.toronto.edu/~hinton/
http://www.salk.edu/scientist/terrence-sejnowski/
https://people.eecs.berkeley.edu/~jordan/
http://norvig.com
http://www.iro.umontreal.ca/~bengioy/yoshua_en/
http://www.iangoodfellow.com
http://karpathy.github.io
http://www.socher.org
http://demishassabis.com
https://nlp.stanford.edu/~manning/
http://vision.stanford.edu/people.html
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
http://people.ee.duke.edu/~lcarin/
https://web.stanford.edu/~jurafsky/
http://allenai.org/team/orene/
许多研究机构致力于促进人工智能的研究与开发。下面我列出了一些机构的网站。
https://openai.com
https://deepmind.com
https://research.googleblog.com
https://aws.amazon.com/blogs/ai/
https://research.fb.com/category/facebook-ai-research-fair/
https://www.microsoft.com/en-us/research/
http://research.baidu.com
https://software.intel.com/en-us/ai-academy
http://allenai.org
https://www.partnershiponai.org
网上也有大量的视频课程和教程,其中很多都是免费的,还有一些付费的也很不错,但是在这篇文章中我只提供免费内容的链接。下面我列出的这些免费课程可以让你学上好几个月:
https://www.coursera.org/learn/machine-learning#syllabus
https://www.coursera.org/learn/neural-networks
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
http://course.fast.ai/start.html
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
http://study.163.com/course/introduction/1003223001.htm
https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
https://github.com/oxford-cs-deepnlp-2017/lectures
http://study.163.com/course/introduction/1004336028.htm
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
YouTube上有很多频道或者用户都经常会发布一些AI或者机器学习相关的内容,我把这些链接按照订阅数/观看数多少列示在下边,这样方便看出来哪个更受欢迎。
https://www.youtube.com/user/sentdex
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
https://www.youtube.com/user/keeroyz
https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
https://www.youtube.com/user/dataschool
https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw
虽然人工智能和机器学习现在这么火,但是我很惊讶地发现相关博主并没有那么多。可能是因为内容比较复杂,把有意义的部分整理出来需要花很大精力;也有可能是因为类似Quora这样的平台比较多,专家们回答问题更方便也不需要花太多时间做详细论述。
下面我会按照推特的关注数排序介绍一些博主,他们一直在做人工智能相关的原创内容,而不只是一些新闻摘要或者公司博客。
http://karpathy.github.io
http://iamtrask.github.io
http://colah.github.io
http://www.topbots.com
http://www.wildml.com
https://distill.pub
http://machinelearningmastery.com/blog/
http://fastml.com
https://joanna-bryson.blogspot.de
http://sebastianruder.com
http://unsupervisedmethods.com
https://explosion.ai/blog/
http://timdettmers.com
http://blog.wtf.sg
https://ml.berkeley.edu/blog/
下面介绍到的是Medium上人工智能相关的顶级作者,按照2017年Mediumas的排行榜排序。
https://medium.com/@robbieallen
https://medium.com/@erikpmvermeulen
https://medium.com/@withfries2
https://medium.com/@azeem
https://medium.com/@samdebrule
https://medium.com/@derrickharris
https://medium.com/@yitaek
https://medium.com/@samim
https://medium.com/@Paul_Boutin
https://medium.com/@thinkmariya
https://medium.com/@robmay
https://medium.com/@hindupuravinash
市面上有许多关于机器学习、深度学习和自然语言处理等方面的书籍,我只列示了可以直接从网上免费获得或者下载的书籍。
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
http://www.mlyearning.org
http://ciml.info
https://www.intechopen.com/books/machine_learning
http://neuralnetworksanddeeplearning.com
http://www.deeplearningbook.org
http://incompleteideas.net/sutton/book/the-book-2nd.html
https://www.intechopen.com/books/reinforcement_learning
https://web.stanford.edu/~jurafsky/slp3/
http://www.nltk.org/book/
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
http://people.math.umass.edu/~lavine/Book/book.pdf
https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
http://greenteapress.com/wp/think-stats-2e/
http://statistics.zone
http://joshua.smcvt.edu/linearalgebra/book.pdf
http://www.math.brown.edu/~treil/papers/LADW/book.pdf
https://math.byu.edu/~klkuttle/Linearalgebra.pdf
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora已经成为人工智能和机器学习的重要资源,许多顶尖的研究人员会在上面回答问题。下面我列出了一些主要关于人工智能的话题,如果你想自定义你的Quora喜好,你可以选择订阅这些话题。记得去查看每个话题下的FAQ部分(例如机器学习下常见问题解答),你可以看到Quora社区里提供的一些常见问题列表。
https://www.quora.com/topic/Computer-Science
https://www.quora.com/topic/Machine-Learning
https://www.quora.com/topic/Artificial-Intelligence
https://www.quora.com/topic/Deep-Learning
https://www.quora.com/topic/Natural-Language-Processing
https://www.quora.com/topic/Classification-machine-learning
https://www.quora.com/topic/Artificial-General-Intelligence
https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493
https://www.quora.com/topic/Computational-Linguistics
https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs
Reddit上的人工智能社区并没有Quora上那么活跃,但是还是有一些很不错的话题。相对于Quora问答的形式,Reddit更适合于用来跟踪最新的新闻和研究。下面是一些主要关于人工智能的Reddit话题,按照订阅人数排序。
https://www.reddit.com/r/MachineLearning
https://www.reddit.com/r/robotics/
https://www.reddit.com/r/artificial/
https://www.reddit.com/r/datascience
https://www.reddit.com/r/learnmachinelearning/
https://www.reddit.com/r/computervision
https://www.reddit.com/r/MLQuestions
https://www.reddit.com/r/LanguageTechnology
https://www.reddit.com/r/mlclass
https://www.reddit.com/r/mlpapers
人工智能社区的好处之一是大部分新项目都是开源的,并且能在GitHub上获取到。同样如果你想了解使用Python或者Juypter Notebooks来实现实例算法,GitHub上也有很多学习资源可以帮助到你。以下是一些GitHub项目:
https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=✓
https://github.com/search?q=topic%3Adeep-learning&type=Repositories
https://github.com/search?q=topic%3Atensorflow&type=Repositories
https://github.com/search?q=topic%3Aneural-network&type=Repositories
https://github.com/search?utf8=✓&q=topic%3Anlp&type=Repositories
人工智能相关的播客数量在不断的增加,有些播客关注最新的新闻,有些关注教授相关知识。
https://concerning.ai
https://twimlai.com
https://blogs.nvidia.com/ai-podcast/
http://dataskeptic.com
https://itunes.apple.com/us/podcast/linear-digressions/id941219323
http://partiallyderivative.com
http://radar.oreilly.com/tag/oreilly-data-show-podcast
http://www.learningmachines101.com
http://www.thetalkingmachines.com
http://techemergence.com
http://ocdevel.com/podcasts/machine-learning
如果你想追踪最新的新闻和研究的话,种类渐增的每周新闻是一个不错的选择:其中大部分都包含相同的内容,所以订阅两三个就足够。
https://www.getrevue.co/profile/azeem
http://aiweekly.co
https://deephunt.in
http://www.oreilly.com/ai/newsletter.html
http://mlweekly.com
https://www.datascienceweekly.org
http://subscribe.machinelearnings.co
http://aiweekly.co
https://meetnucleus.com/p/GVBR82UWhWb9
https://meetnucleus.com/p/PoZVx95N9RGV
https://inside.com/technically-sentient
http://www.kurzweilai.net/create-account
https://jack-clark.net/import-ai/
https://www.getrevue.co/profile/wildml
http://www.deeplearningweekly.com
https://www.datascienceweekly.org
http://www.kdnuggets.com/news/subscribe.html?qst
随着人工智能的普及,人工智能相关的科研会议数量也在不断增加。我只提了几个主要的会议,没列所有的。(当然会议并不是免费的!)
https://nips.cc
https://2017.icml.cc
http://www.kdd.org
http://www.iclr.cc
http://acl2017.org
http://emnlp2017.net
http://cvpr2017.thecvf.com
http://iccv2017.thecvf.com
https://conferences.oreilly.com/artificial-intelligence/
http://mlconf.com
https://www.ai-expo.net
https://theaisummit.com
https://aiconference.ticketleap.com/helloworld/
你可以在网上浏览或者搜索已经发布的学术论文。
arXiv 是较早的预印本库,也是物理学及相关专业领域中最大的,该数据库目前已有数学、物理学和计算机科学方面的论文可开放获取的达50多万篇。
https://arxiv.org/list/cs.AI/recent
https://arxiv.org/list/cs.LG/recent
https://arxiv.org/list/stat.ML/recent
https://arxiv.org/list/cs.CL/recent
https://arxiv.org/list/cs.CV/recent
Semantic Scholar是由微软联合创始人保罗·艾伦创立的艾伦人工智能研究所推出的学术搜索引擎
https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
https://www.semanticscholar.org/search?q=%22computer%20vision%22&sort=relevance&ae=false
https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
http://www.arxiv-sanity.com/
我另外单独有一篇详细的文章涵盖了我发现的所有的优秀教程内容:
https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd7
和教程一样,我同样单独有一篇文章介绍了许多种很有用的小抄表:
https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6
通读完本篇文章,是不是对于如何查找关于人工智能领域的资料有了清晰的方向。资料很多,大多都是国外的网站,所以大家需要科学上网哟~~~
原文链接:
https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524