人工智能正越来越多的渗透入人们的生活,改变人们的生活,从自然语言生成到语音识别、从医疗诊断到商业决策,AI逐渐开始显露出巨大的优势,并且它的脚步不会停止。
在论坛上,Google全球副总裁、工程研究员Jay Yagnik 携Google 不同领域的研究者发表了演讲,重点阐述了Google AI在自家产品上的应用以及如何利用AI解决人类面临的医疗、宇宙探索等挑战。
相信很多人都有这样一个经历,走在路上前面有个人看背影挺熟悉,于是赶忙跑过去拍人家肩膀。结果一回头,大写的尴尬。
近日,来自爱丁堡大学的研究人员提出了一种结合深度神经网络和树模型的新型模型——深度神经决策树(Deep Neural Decision Trees, DNDT)。
目前,许多令人兴奋的人工智能改变医疗领域的事件正在上演。人工智能技术正在涌现,帮助人们将管理和临床医疗流程化自动化
传统的情感计算模型利用一刀切的思想来训练模型,将在某一数据集上训练描绘不同表情的优化特征作为通用特征用于整个全新的新数据集。
新时代的AI电力在向各个领域输送着源源不断的能量,从工厂到商场,从太空到细胞都有着它活跃的身影。如今赋能畜牧业将会带来怎样的化学反应呢?
美国2018年二季度GDP增速达4.1%,为4年来最高水平,但这更多的是临时政策刺激下的结果,可持续性不高。本文认为,AI和机器学习技术的大发展才是推动世界范围内生产力和经济增长的强劲、可持续的引擎。
近日,《财富》公布了2018年度世界500强企业名单,通观整个榜单,可以看出科技企业有了大幅度的跃升。
设计新的药物分子需要手工进行,耗时且容易出错。但是麻省理工学院的研究人员已经朝着完全自动化的设计过程向前迈出了一步,这将大大加快设计过程,并获得更好的结果。机器学习模型可以帮助化学家更快地制造出具有更高功效的分子。
学者们始终没有找到合适的方法来实现如此灵活智能的机器,因此他们将目标转而解决更加实际和具体的智能化问题,也就是今天我们通常所说侠义范围内的人工智能产品。
在数据子集上对深度学习软件进行“训练”后,将深度学习软件应用到整个数据库中。人工智能准确识别晶体的几率大约95 %,据估计,人类发现晶体的正确率只有85 %。
近日,国际机器学习顶级会议 ICML 在官网公布了 2018 年度的最佳论文名单。
我们所面临的这一次人工智能崛起,来自于数据量的增长和深度学习发展,传感器为智能体打造一个完全结构化的数据世界,再从中抽取规律,让智能体可以自主作业。
本文将从政策的视角解读目前火热的AI发展,从国家和政策层面解释人工智能战略在全球范围内突然涌现的原因,并对人工智能政策进行更为深入的探讨。