近日,莫斯科物理技术学院、伊万尼科夫系统编程研究所和哈佛医学院附属的谢本斯眼研究所的研究人员开发出了一种能够在培养皿分化过程中识别视网膜组织的神经网络。
公众号/AI公园 作者:AltexSoft Inc 编译:ronghuaiyang 导读 给大家介绍一下AI在 […]
近年来,Adobe和Celsys等多媒体制作类软件开发公司一直在尝试将机器深度学习加入数字艺术软件中,希望通过消除耗时的人力工作来加快工作流程,以此给予画师更多时间来实践他们的创意。
未来,构建 ML 产品将更加有趣,并且这些系统会工作得更好。随着 ML 自动化工具的不断改进,数据科学家和 ML 工程师将把更多的时间花在构建优秀的模型上,而花在与生产级 ML 系统相关的繁琐但必要的任务上的时间会更少。
2020年2月13日,美国外国投资委员会(CFIUS)外国投资审查法案最终规则正式生效。这是对2018年外国投资风险审查现代化法案(FIRRMA)的进一步确定和细节规定的落实。
武汉新型冠状病毒肺炎的疫情仍在不断扩散。截至2020年1月30日7时,确诊病例达到7201例,确诊病例数已经超过2003年非典。随着确诊人数的增多,需要尽快确定可能感染武汉2019年新型冠状病毒(2019-nCoV)的潜在宿主与中间宿主,切断病毒传播链。
为了深入研究这一问题,来自谷歌的研究人员在NeurIPS上发表了一项对模型在数据集分布漂移情况下不确定性进行评测的工作,细致地分析了前沿的深度学习模型在数据分布漂移和处于分布外数据的作用下的不确定性。
最近,我们构建了一个将机器学习模型部署为 API 的开源平台—— Cortex,我们考虑了很久应该如何选择编程语言。最终的结果是代码库中有 87.5% 用的是 Go。经过一番比较,我们认为:Python 适用于机器学习,而 Go 适用于基础设施。
还记得去年圣诞吗,黑镜出了一个特别篇——《黑镜:潘达斯奈基》,尽管黑镜系列被Netflix买下后已走下神坛,但也不能否认他们在技术上的创新。
在刚闭幕不久的 2019 年 NeurIPS 大会上,美国莱斯大学(Rice University)研究员 Anshumali Shrivastava 宣布他们在分布式深度学习方面取得了新的突破——MACH 算法。
在环境中保持稳定是所有生物共同的基本诉求,我们会不断努力追求确定性的环境和未来,并在与环境交互的过程中展现出一系列复杂的行为与能力。
对于开发者和机器学习研究人员来说,需要深入思考医疗行业的需求,从问题选择、数据收集和机器学习模型构建到验证和测评、部署和监控等方面都需要进行详尽的考量。
谷歌AI负责人Jeff Dean 近日接受专访,讨论了2020 年机器学习领域趋势,他认为在规模更大的多任务学习和多模式学习方面,AI将取得新的里程碑。
那么对于数据驱动的机器人方法也不仅仅需要发展优秀的强化学习算法,同时也需要建立大规模的机器人学数据。
随着BERT等自然语言模型取得的突破性进展,人们逐渐认识到大模型可以在无标签数据上学习语言的强大表示。
都说做一件事情最好的时机就是「现在」,但是从何开始往往会难倒一大批人,更不用说是想要入门数据科学和机器学习的朋友了。
本文对 北美计算语言学联合会 2019 年出版的《自然语言处理中迁移学习教程》(NAACL 2019 tutorial on Transfer Learning in NLP)进行了拓展。
公众号/AI前线 策划 | 刘燕 作者 | Jerry Wei 译者 | Sambodhi 编辑 | Lind […]
深度学习已经成为推荐系统领域的首选方法,但与此同时,已有一些论文指出了目前应用机器学习的研究中存在的问题,例如新模型结果的可复现性,或对比实验中基线的选择。
胶囊网络是一个令人兴奋的机器学习研究思想,其中标量值的“神经元”被小矩阵取代,使它们能够捕捉更复杂的关系。