最近,研究人员能够从少量血液样本中测量数千种血浆蛋白,这为广泛的数据提供了新的维度,可以增进我们对人类健康的了解。
设计具有定制电气和机械性能的超轻导电气凝胶,对于各种电子设备的应用都至关重要。传统方法依赖于在广阔的参数空间中进行迭代、耗时的实验。
量子计算机的核心看起来似乎很熟悉:一块邮票大小的硅芯片。但和你笔记本电脑的相似之处就到此为止了。该芯片被包裹在真空室中,冷却到接近绝对零度,上面有 198 个金电极,排列成椭圆形的赛道。
据此前报道,Salvagnini 在情报界从事技术领导工作 20 多年后,于 2023 年 6 月加入 NASA,担任首席数据官。
该研究以《Machine Learning based Reconstruction for the MUonE Experiment》为题,于 2024 年 3 月 10 日发布在《Computer Science》上。
公众号/ ScienceAI(ID:Philosophyai) 抗体(粉色)与流感病毒蛋白(黄色)结合(艺术构 […]
该研究以「Codon language embeddings provide strong signals for use in protein engineering」为题于 2024 年 2 月 23 日发布在《Nature Machine Intelligence》。
普林斯顿大学机械与航空航天工程教授、该研究的作者之一 Egemen Kolemen 表示,这些发现「绝对」是核聚变向前迈出的一步。
该研究以「Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies」为题,于 2023 年 11 月 30 日发布在《Nature Communications》。
拜罗伊特大学(Universität Bayreuth)的科学家开发了一种利用人工智能研究液体和软物质的新方法,开启了密度泛函理论的新篇章。
「这里的见解是,我们可以看到模型正在学习什么,以做出某些分子将成为良好抗生素的预测。从化学结构的角度来看,我们的工作提供了一个具有时间效率、资源效率和机械洞察力的框架,这是我们迄今为止所没有的。」麻省理工学院医学工程与科学研究所(IMES)和生物工程系医学工程与科学 Termeer 教授 James Collins 说道。
该研究以「DeepDelta: predicting ADMET improvements of molecular derivatives with deep learning」为题,于 2023 年 10 月 27 日发布在《Journal of Cheminformatics》。
公众号/ ScienceAI(ID:Philosophyai) 编辑 | 萝卜皮 机器学习方法,特别是在大型数 […]
Google DeepMind 团队介绍了「GraphCast」,一种直接从再分析数据训练的基于机器学习的方法。
快速浏览一下资讯类网站就会发现,如今生成人工智能似乎变得无处不在。事实上,其中一些新闻资讯可能是由生成式人工智能帮忙撰写的,例如 OpenAI 的 ChatGPT。
密度泛函理论(DFT)的定理建立了多体系统的局部外部势与其电子密度、波函数以及单粒子约化密度矩阵之间的双射映射。
设计新型催化剂是解决许多能源和环境挑战的关键。尽管包括机器学习 (ML) 在内的数据科学方法有望加速催化剂的开发,通过机器学习方法很少发现真正新颖的催化剂,因为它最大的局限性是假设无法推断和识别特殊材料。
微观结构分割是一种从显微图像中提取结构统计数据的技术,是在广泛的材料研究领域建立定量结构-性能关系的重要步骤。
神经科学的一个主要关键是了解我们的感官如何将光转化为视觉,将声音转化为听觉,将食物转化为味觉,将质地转化为触觉。嗅觉有一些特别之处。
了解大脑计算的基础对于推进计算和治疗神经系统疾病至关重要。尽管现代 AI 取得了越来越多的成功,但生物智能仍然是无与伦比的,并且在许多认知任务中的能源效率要高出几个数量级。
德国柏林马克斯·普朗克学会弗里茨·哈伯研究所(Fritz-Haber-Institut der Max-Planck-Gesellschaft)和柏林洪堡大学(Humblodt Universität zu Berlin)的研究团队提出了一个通用的数据驱动框架,该框架提供定量预测以及定性规则,用于通过符号回归和敏感性分析的组合指导所有数据集的数据创建。
物理系统中存在的纠缠的量化对于基础研究和许多前沿应用至关重要。现在,实现这一目标需要系统的先验知识或非常苛刻的实验程序,例如全状态断层扫描或集体测量。