量子计算机的核心看起来似乎很熟悉:一块邮票大小的硅芯片。但和你笔记本电脑的相似之处就到此为止了。该芯片被包裹在真空室中,冷却到接近绝对零度,上面有 198 个金电极,排列成椭圆形的赛道。
物理系统中存在的纠缠的量化对于基础研究和许多前沿应用至关重要。现在,实现这一目标需要系统的先验知识或非常苛刻的实验程序,例如全状态断层扫描或集体测量。
为了使量子材料的发现成为可能,来自太平洋西北国家实验室 (PNNL) 研究人员将详细的数据库作为他们的虚拟实验室。研究人员创建了一个新的未被充分研究的量子材料数据库,为发现新材料提供了一条途径。
虽然缩小场效应晶体管的尺寸对于提高计算效率是非常有效,但当接近纳米级时,Si/SiO2 界面处的量子隧穿会带来新的问题。
贫瘠高原是在机器学习优化算法中发生的可训练性问题,算法无法在似乎没有特征的景观中找到向下的坡度,也没有通往最小能量的明确途径。
量子计算机从科学理论转向大众普及,也许并不需要30年那么长时间。这是一个令人兴奋的领域,我们已经进入了具有巨大科学发现潜力的新时代,很快我们就会开始发现量子计算机能在更广泛的范围内发挥作用,包括物质科学、化学领域、物理系统、人工智能和机器学习等等。——米哈伊尔·卢金
简而言之,问题越复杂,涉及的变量越多,量子计算的效果就越好。这也是该领域在35多年的时间里让科学家们一直在追求这个领域的原因。
密度泛函理论(DFT)的定理建立了多体系统的局部外部势与其电子密度、波函数以及单粒子约化密度矩阵之间的双射映射。
德国柏林马克斯·普朗克学会弗里茨·哈伯研究所(Fritz-Haber-Institut der Max-Planck-Gesellschaft)和柏林洪堡大学(Humblodt Universität zu Berlin)的研究团队提出了一个通用的数据驱动框架,该框架提供定量预测以及定性规则,用于通过符号回归和敏感性分析的组合指导所有数据集的数据创建。