都说做一件事情最好的时机就是「现在」,但是从何开始往往会难倒一大批人,更不用说是想要入门数据科学和机器学习的朋友了。
显著性检测的主要任务是检测出图像中具有最独特视觉特征的目标区域,它在视觉内容编辑、目标检测、渲染、分割等领域有着重要的应用。
物联网正在不断产生不可思议的数据量。分析师预计,2019年将有266.6亿台物联网设备投入使用。此外,IDC预计,到2025年,物联网设备将产生超过90 zettabytes的数据。
本文对 北美计算语言学联合会 2019 年出版的《自然语言处理中迁移学习教程》(NAACL 2019 tutorial on Transfer Learning in NLP)进行了拓展。
伪彩色图在计算机视觉和机器学习中具有重要的应用,从深度图的可视化到类似图像差分等抽象应用都需要伪彩色图来帮助我们理解视觉信息。
企业数据科学仍然是一个新的领域。很多学者都还没有为为真正的企业解决过真正的问题,所以他们以一种与数据和业务环境相分离的方式教授教科书中的算法。
NLP 是人工智能中最难的问题之一,对它的研究与落地充满了挑战性。预训练模型 BERT 的出现给自然语言处理领域带来了里程碑式的改变。
连接组学作为脑科学中的重要分支,一直以来致力于重建出脑部各个部分间的连接地图,以理解神经系统的工作原理。大脑中动辄十亿百亿计的细胞让这项研究充满了挑战。
面部图像操作是计算机视觉和计算机图形学里十分重要的研究方向,包括自动表情生成和面部风格迁移方向都离不开它的身影,也成为了美妆app里重要的AI技术。
公众号/AI前线 策划 | 刘燕 作者 | Jerry Wei 译者 | Sambodhi 编辑 | Lind […]
今天,Facebook 与加州大学旧金山分校(UCSF)发布了有关脑机接口研究的最新进展,其论文出现在了最新一期的自然杂志子刊《Nature Communications》上。
深度学习已经成为推荐系统领域的首选方法,但与此同时,已有一些论文指出了目前应用机器学习的研究中存在的问题,例如新模型结果的可复现性,或对比实验中基线的选择。
先进的机器学习算法逐步在专业的医疗诊断领域发挥出重要的作用,在检测糖尿病引起的眼部疾病和乳腺癌中都发挥了重要作用。